

COMMUNICATIONS TO THE EDITOR

Phomactin E, F, and G: New Phomactin-group PAF Antagonists from a Marine Fungus *Phoma* sp.

Sir:

Platelet activating factor (PAF) is a naturally occurring etherphospholipid that is a mediator of anaphylaxis released by a number of stimulated cells, such as basophils, neutrophils, platelets, and macrophages, and it causes degranulation of polymorphonuclear leukocytes, smooth muscle contraction, vascular permeability, and hypotension.¹⁾ Intensive efforts to find drugs that attenuate the effects of PAF have resulted in the discovery of a number of specific PAF antagonists, some of which are being tested for their clinical effectiveness.^{2,3)}

In the course of finding PAF antagonists from metabolites of a marine fungus *Phoma* sp., we have discovered novel PAF antagonists: phomactin A, B, B₁, B₂, D.^{4,5)} CHU *et al.* also reported several PAF antagonists with the same skeletal framework as phomactins.^{6,7)} Recently we found three related compounds; phomactin E (1), F (2), and G (3). In this paper, we report the structures and PAF antagonistic activities of 1, 2, and 3.

Fermentation was carried out at 23°C with agitation at 80 rpm for 12 days in two 600-liter tanks, each containing 300 liters of a medium consisting of sucrose 2.0%, K₂HPO₄ 0.5%, peptone 1.0%, potato 1.0%, and CB442 0.02% (pH 8.5).

Culture filtrate (600 liters) was extracted with EtOAc (600 liters). Assay-directed purification of the EtOAc extract by silica gel and reversed-phase chromatography

gave phomactin E (1) (940.0 mg), F (2) (25.0 mg) and G (3) (170.0 mg). The ¹H and ¹³C NMR (Tables 1 and 2) and other spectral data (Table 3) showed that these compounds had the same skeletal framework as phomactin B (4).

The molecular formula of phomactin E (C₂₀H₃₀O₃), determined by high-resolution mass spectrum (HREI-MS, *m/z* 318.21684; Δ = 2.6 mmu), was less by one oxygen than that of 4 (C₂₀H₃₀O₄). Comparison of NMR spectra of 4 and 1 showed that one carbon containing a

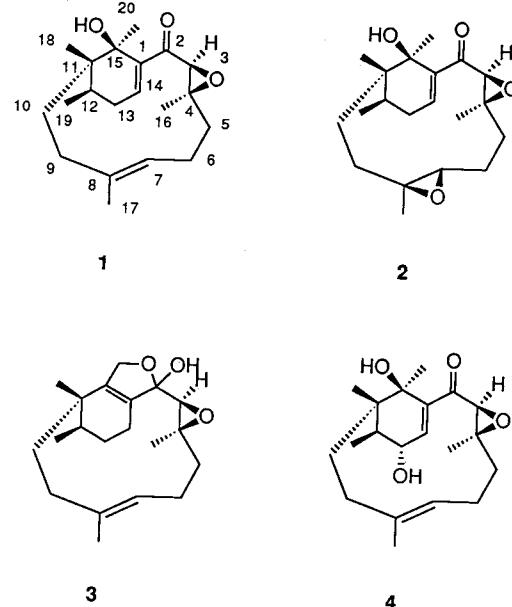


Table 1. ¹H NMR spectra of phomactin E (1), F (2), G (3), and B (4) (CD₃OD).

Number	(1) ppm (mult., <i>J</i> , Hz)	(2) ppm (mult., <i>J</i> , Hz)	(3) ppm (mult., <i>J</i> , Hz)	(4) ppm (mult., <i>J</i> , Hz)
3	3.91 (s)	3.99 (s)	2.85 (s)	3.81 (s)
5	1.24 (m)	1.38 (m)	1.92 (m)	1.24 (m)
	2.17 (m)	2.23 (m)	1.72 (m)	2.15 (m)
6	2.46 (m)	2.21 (m)	1.89 (m)	2.38 (m)
	2.12 (m)	1.48 (m)	1.79 (m)	2.10 (m)
7	5.37 (br t, 7.2)	2.73 (dd, 10.5, 3.7)	5.07 (br d, 10.0)	5.31 (br t, 7.3)
9	2.20 (m)	1.59 (m)	2.45 (m)	2.16 (m)
	2.20 (m)	1.59 (m)	1.94 (m)	2.16 (m)
10	1.35 (m)	1.99 (m)	1.67 (m)	1.39 (ddd, 15.7, 7.6, 4.6)
	2.17 (m)	1.03 (m)	1.53 (m)	2.02 (ddd, 15.7, 8.0, 4.9)
12	1.61 (dq, 8.5, 7.5)	1.74 (dq, 9.3, 7.3)	2.13 (ddq, 12.0, 2.5, 7.3)	1.63 (dq, 3.2, 7.5)
13	2.78 (ddd, 20.6, 8.5, 3.5)	2.49 (ddd, 19.4, 9.3, 6.4)	1.64 (dq, 12.5, 12.0)	4.12 (dd, 3.2, 2.6)
	2.05 (dd, 20.6, 4.3)	2.10 (dd, 19.4, 2.7)	1.44 (m)	
14	5.86 (dd, 3.5, 4.3)	5.84 (dd, 6.4, 2.7)	2.01 (m)	5.91 (d, 2.6)
			1.85 (m)	
16	1.20 (s)	1.27 (s)	1.40 (s)	1.24 (s)
17	1.63 (s)	1.32 (s)	1.64 (s)	1.60 (s)
18	1.17 (s)	1.15 (s)	0.93 (s)	1.13 (s)
19	1.23 (d, 7.3)	1.18 (d, 7.3)	0.92 (d, 7.3)	1.27 (d, 7.5)
20	1.48 (s)	1.49 (s)	4.51 (ddq, 12.5, 2.0, 1.5)	1.46 (s)
			4.37 (ddd, 12.5, 4.1, 1.3)	

Table 2. ^{13}C NMR spectra of phomactin E (1), F (2), G (3), and B (4).

Number	1 ppm (mult.)	2 ppm (mult.)	3 ppm (mult.)	4 ppm (mult.)
1	149.5 (s)	150.6 (s)	134.5 (s)	147.2 (s)
2	203.2 (s)	202.6 (s)	109.7 (s)	200.3 (s)
3	68.8 (d)	68.2 (d)	64.9 (d)	65.9 (d)
4	64.2 (s)	64.4 (s)	61.4 (s)	62.8 (s)
5	39.2 (t)	35.5 (t)	35.1 (t)	37.4 (t)
6	24.4 (t)	25.3 (t)	24.4 (t)	22.7 (t)
7	121.0 (d)	62.5 (d)	129.5 (d)	120.3 (d)
8	137.8 (s)	64.0 (s)	135.2 (s)	136.8 (s)
9	33.9 (t)	38.9 (t)	36.1 (t)	33.6 (t)
10	35.0 (t)	35.6 (t)	33.6 (t)	36.7 (t)
11	44.0 (s)	43.7 (s)	38.6 (s)	41.5 (s)
12	40.9 (d)	34.3 (d)	34.5 (d)	46.3 (d)
13	32.9 (t)	33.4 (t)	29.1 (t)	71.4 (d)
14	134.4 (d)	133.4 (d)	24.1 (t)	135.6 (d)
15	74.2 (s)	76.5 (s)	144.7 (s)	73.3 (s)
16	15.3 (q)	14.8 (q)	21.0 (q)	14.5 (q)
17	17.9 (q)	16.2 (q)	17.0 (q)	16.4 (q)
18	19.0 (q)	21.1 (q)	22.2 (q)	19.7 (q)
19	21.1 (q)	22.0 (q)	14.9 (q)	19.7 (q)
20	26.0 (q)	23.2 (q)	70.5 (t)	23.2 (q)

1, 2, 3 were measured in CD_3OD . 4 was measured in $\text{DMSO}-d_6$.

Table 3. Physicochemical properties of phomactin E (1), F (2), and G (3).

	1	2	3
MP (°C)	148~149	199~202	131~132
Molecular formula	$\text{C}_{20}\text{H}_{30}\text{O}_3$	$\text{C}_{20}\text{H}_{30}\text{O}_4$	$\text{C}_{20}\text{H}_{30}\text{O}_3$
HREI-MS	318.21684	334.21322	318.21765
$[\alpha]_D^{25}$ (CHCl ₃)	+178.4	+120.9	+96.9
UV λ_{max} (ε)	238 (3500)	239 (3200)	End

hydroxyl (δ_{C} 71.4 (d), δ_{H} 4.12 (1H dd, $J=3.2, 2.6$ Hz)) in 4 was replaced by a methylene carbon ((δ_{C} 32.9 (t), δ_{H} 2.78 (1H, ddd, $J=20.6, 8.5, 3.5$ Hz), 2.05 (1H, dd, $J=20.6, 4.3$ Hz)). Furthermore, the long-range coupling was observed from the doublet methyl proton (δ_{H} 1.23) to this methylene carbon. 1 was therefore suggested to be a deoxy derivative of 4 at C₁₃. In order to verify the proposed structure and establish the overall stereochemistry of 1, X-ray diffraction analysis was performed on a crystal obtained from CH_2Cl_2 -hexane (space group $P2_12_12_1$, $a=20.382(1)$ Å, $b=13.498(1)$ Å, $c=13.391(2)$ Å, $Z=8$). The structure was determined by the direct method (MULTAN 78) and successive block diagonal least-squares and Fourier synthesis. Parameters were refined by using anisotropic temperature factors to $R=0.060$. The ORTEP of 1 is shown in Fig. 1.

The X-ray analysis revealed a further structural feature in that α, β -unsaturated ketone (C₁₄-C₁-C₂-O) was nonplanar; the dihedral angle between the carbonyl and the C₁-C₁₄ double bond was 119°. This accounted for the

Fig. 1. ORTEP drawing of phomactin E (1).

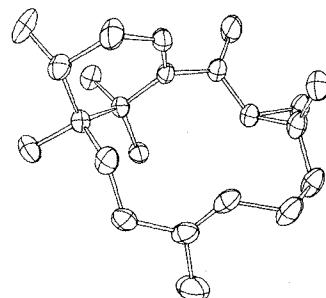
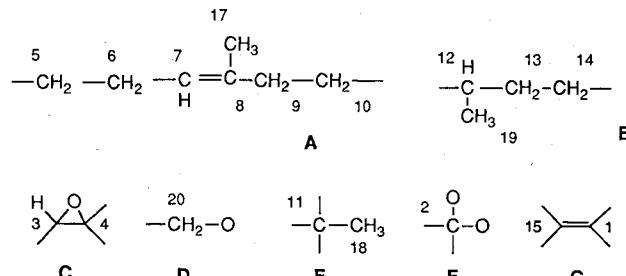



Fig. 2. Partial structures of phomactin G (3).

low ϵ (3500) in the UV, and an unusual ^{13}C NMR assignment at C₁ (δ_{C} 149.5) and C₁₄ (δ_{C} 134.4).

Phomactin F (2) has the molecular formula $\text{C}_{20}\text{H}_{30}\text{O}_4$, determined by HREI-MS (m/z 334.21322 $\Delta=1.1$ mmu). In the ^1H and ^{13}C NMR, 2 differed from 1 only in the replacement of one double bond (δ_{C} 121.0 (d), 137.8 (s); 5.37 (1H, br t, $J=7.2$ Hz) in 1 by a epoxide (δ_{C} 64.0 (s), 62.5 (d); δ_{H} 2.73 (1H, dd, $J=10.5, 3.7$ Hz) in 2. The UV spectrum showed the maximum at 239 nm (ϵ 3200) due to the enone (C₁₄-C₁-C₂-O). Combining of the above data suggested that 2 had the epoxide at C₇ and C₈. To confirm the structure, 1 was converted to 2 by MCPBA oxidation.

The MCPBA oxidation of 1 in CHCl₃ gave a single diastereomer in an 87% yield, suggesting that the oxidation occurred at the less hindered side of the double bond. From the ORTEP drawing of 1, the 8-Si plane at C₇, C₈ was more open and therefore preferred by the attack of MCPBA to give 2. To clarify the conformation of 1 in CHCl₃, NOE experiments were performed. The irradiation of H₃ resulted in enhancement of H₂₀, whereas the irradiation of H₇ resulted in enhancement of H₁₆, H₁₄, and H₁₃. These results showed that 1 had the same conformation in CHCl₃ as in crystal state. Hence the structure of phomactin F, including the stereochemistry at C₇ and C₈, is proposed as 2.

Phomactin G (3) has the molecular formula $\text{C}_{20}\text{H}_{30}\text{O}_3$, from its HREI-MS (m/z 318.21765 $\Delta=1.8$ mmu). The ^1H , ^{13}C NMR, and DQF COSY experiments inferred the partial structure A~G (Fig. 2). Further information regarding the skeletal framework was sought from the COLOC experiment. The cross peak of 3H₁₈ to C₁₂,

C_{15} , and C_{10} confirmed the linkage **E**, **B**, **G**, and **A**. The linkage **A** and **C** was obtained from the coupling of $3H_{16}$ with C_5 and C_3 . The couplings of H_{20} with C_{15} , C_1 , and C_2 suggested that **D**, **G**, and **F** constituted a dihydrofuran ring. Insertion of this dihydrofuran ring between C_3 and C_{14} was based on the coupling of H_3 to C_2 and H_{14} to C_1 . Based on these data, the structure of phomactin **G** was proposed as **3**. The stereochemistries at C_3 , C_4 , C_{11} , and C_{12} were assumed to be same as **1** because **1** and **3** may have the same biosynthetic pathway. However the stereochemistry at C_2 is still unknown.

Phomactin **E** (**1**), **F** (**2**), and **G** (**3**) inhibited PAF-induced platelet aggregation with IC_{50} s of $2.3\ \mu M$, $3.9\ \mu M$, and $3.2\ \mu M$, respectively, and also inhibited binding of PAF to its receptors with IC_{50} s of $5.19\ \mu M$, $35.9\ \mu M$, and $0.38\ \mu M$, respectively. **2** is less active than **1** due to the presence of epoxide at C_7 , C_8 . These data suggested that the lipophilicity at C_7 , C_8 had a significant role in receptor binding.

The absolute stereochemistry of **1**, **2**, and **3** is now under investigation.

MICHIHIRO SUGANO^a,
AIYA SATO^a,
YASUTERU IJIMA^b,
KOUHEI FURUYA^c,
HARUMITSU KUWANO^d
TADASHI HATA^d

^a Biomedical Research Laboratories,

^b Pharmacology and Molecularbiology
Research Laboratories,

^cTsukuba Research Laboratories,

and ^dAnalytical and Metabolic
Research Laboratories, Sankyo Co. Ltd.,

2-58, 1-chome, Hiromachi, Shinagawa-ku,
Tokyo 140, Japan

(Received May 23, 1995)

References

- 1) BRAQUET, P.; L. TOUQUI, T. Y. SHEN & B. B. VARGAFTIG: Perspectives in platelet-activating factor research. *Pharm. Rev.* 39: 97~145, 1987
- 2) CASALS-STENZEL, J.; G. MUACEVIC & K.-H. WEBER: Pharmacological actions of WEB 2086, a new specific antagonist of platelet activating factor. *J. Pharmacol. Exp. Ther.* 241: 974~981, 1987
- 3) SAHOO, S. P.; D. W. GRAHAM, J. J. ACTON, T. BITFU, R. L. BUGIANESI, N. N. GIROTRA, C.-H. KUO, M. M. PONPIPOM, T. W. DOEBBER, M. S. WU, S.-B. HWANG, M.-H. LAM, D. E. MACINTYRE, T. J. BACH, S. LUELL, R. MUELER, P. DAVIS & A. W. ALBERTS: Synthesis and biological activity of MK 287 (L-680,573) a potent specific and orally active PAF receptor antagonist. *Bioorg. Med. Chem. Lett.* 1: 327~332, 1991
- 4) SUGANO, M.; A. SATO, Y. IJIMA, K. FURUYA, H. HARUYAMA, K. YODA & T. HATA: Phomactins, novel PAF antagonists from marine fungus *Phoma* sp. *J. Org. Chem.* 59: 564~569, 1994
- 5) SUGANO, M.; A. SATO, Y. IJIMA, T. OSHIMA, K. FURUYA, H. KUWANO & H. HANZAWA: Phomactin A: a novel PAF antagonist from a marine fungus *Phoma* sp. *J. Am. Chem. Soc.* 113: 5463~5464, 1991
- 6) CHU, M.; I. TRUUMES, I. GUNNARSSON, W. R. BISHOP, W. KREUTNER, A. C. HORAN, M. G. PATEL, V. P. GULLO & M. S. PUAR: A novel class of platelet activating factor antagonists from *Phoma* sp. *J. Antibiotics* 46: 554~563, 1993
- 7) CHU, M.; M. G. PATEL, V. P. GULLO, I. TRUUMES & M. S. PUAR: Sch 47918, a novel PAF antagonist from the fungus *Phoma* sp. *J. Org. Chem.* 57: 5817~5818, 1992